
 1

Courses 2DCx: 2D-Computer Graphics with C++/MFC
Chapter C1: Comments to the Intro Project
Copyright © by V. Miszalok, last update: 29-10-2006

In CChildView.cpp inside void CChildView::OnPaint()

dc.TextOut(10,10, "Hello world, here is Intro1 !"); //This statement writes a line of black text
into the left upper corner of your program window. The letters dc. in front of TextOut identify your own
window. The parameters 10, 10 indicate the x and y coordinates in pixels where the text should start. Try out
other cooerdinates such as 0, 0 and 10,100 in order to become familiar with the coordiante system.Its
starting point is the left upper corner of the client area of your program window. The client area is the inner white
rectangle that can be used for drawings.

CRect r; // Declares a data structure af type CRect describing an axis-parallel rectangle named r by 4
integers: r.left, r.top, r.right, r.bottom.

CString sometext; // Declares an empty data structure af type CString which is intended to contain any
text of arbitrary length.

GetClientRect(r); // A Windows-API-function that asks the operating system to write the values of the
client area of the current window into CRect r.

sometext.Format("width=%d, height=%d", r.right, r.bottom); // Format is a member-
function of CString that combines arbitrary text and text converted integer values into one common string.

dc.TextOut(10,30, sometext); //Writes a line of black text underneath the existing line "Hello
world, here is Intro1 !"

dc.SetTextColor(RGB(255,0,0)); //RGB(...) is a macro that unites 3 bytes into one COLORREF value.
The first byte indicates the amount of red color, the second the amount of green color and the third the amount
of blue color (see lecture Color Models, The RGB Color Model). The statement influences the TextOut
statements that follow and has no has no immediate consequences. They will draw their texts in red. Change
the parameters of RGB into (0,255,0), (0,0,255) and to arbitrary combinations such as (55,255,127).

dc.TextOut(10,50, "Change the size of your window !"); //Draws a red third line below the
lines that already exist.

CPoint P; //Declares a data structure af type CPoint describing a 2D-point with the integer coordinates p.x
and p.y.

p.x = r.right / 2; //Fills p.x with the half width of the client area.

p.x = r.bottom / 2; //Fills p.y with the half height of the client area. P is now the middle of the client area.

dc.SetTextColor(RGB(0,0,255)); //This will cause the following texts to be drawn in blue.

dc.TextOut(0 , p.y , "left"); //Put the string "left" to the middle of the left border.
dc.TextOut(r.right-50, p.y , "right"); //Put the string "right" 50 pixels left of to the middle of the
right border.
dc.TextOut(p.x , 0 , "top");< //Put the string "top" to the middle of the upper border.
dc.TextOut(p.x , r.bottom-20, "bottom"); //Put the string "bottom" 20 pixel above the middle of
the lower border.

 2

dc.MoveTo(0,0); dc.LineTo(r.right,r.bottom); dc.MoveTo(r.right,0);
dc.LineTo(0,r.bottom); //This line contains 4 statements of 4 lines of C-Code. dc.MoveTo(0,0); has
no immediate effect. It fixes the invisible start point of a series of black dots that simulate a geometric straight
line on your screen. From this start point (0,0) the next statement dc.LineTo(r.right,r.bottom);
begins to draw a line from the upper left corner to the lower right corner. Invisible programs inside the operating
system (if you have a modern computer probably inside your graphics board) compute all the intermediary black
dots between coordinate (0,0) and coordinate (r.right,r.bottom) and put the dots into the video
memory of your graphics board and on the screen. In the same way you draw (more exactly: you simulate
drawing by putting single dots close together) a second straight geometric line form the upper right corner back
to the lower left. The statements MoveTo and LineTo are the basic statements of any sort of vector graphics. It
is so easy to use them but what they really do behind the curtain of the operating system and the graphic board
driver is not simple at all.

int w5 = r.right / 5; //w5 is 1/5 of the client's area width.

int h5 = r.bottom / 5; //h5 is 1/5 of the client's area height.

dc.Rectangle(w5, h5, 4*w5, 4*h5); //Draws a rectangle

dc.Ellipse (w5, h5, 4*w5, 4*h5); //Draws an ellipse inside the rectangle.

#define nn 120 //This is not a normal line of code, it is a preprocessor statement. When you write a # in the
first column of the of the editor, you tell the compiler that you want to talk to him privatly. With #define nn
120 you tell him that you are tired to write 120. You want him to accept the string nn instead of 120.This makes
sense when you want to stay flexible with some constant values that occur several times in your code.
Whenever you want to replace the constant 120 to 240 you do not need it to change everywhere. You just
change it once in this preprocessor definition.
Beware of this frequent mistake: Do not close preprocessor statements with a semicolon !

int i; // Definition of an integer named i.

CPen pen; // Declares a data structure named pen of type CPen, that allows you to choose, a line style, a line
thickness and a line color for drawing.

CPoint splash[nn];//You reserve memory space for nn coordinates of type CPoint and you give the
name splash (splash this is not a key word, it is an arbitrary name) to the array. each coordinate is of type
CPoint, a data stucture provided by MFC which contains 2 integers x and y. You can access the x- coordinate
of point no. i by writing splash[i].x.

double arcus = 2. * 3.14159 / nn; //Definition of an angle of 1/120 of a full circle (in radians)

double radius_x = 1.5 * w5; //Definition of a maximal horizontal radius

double radius_y = 1.5 * h5; //Definition of a maximal vertical radius

for (i = 0; i < nn; i++) //Do all the enclosed statements that follow 120 times.

COLORREF multicolor = RGB (rand()%255, rand()%255, rand()%255); //Take 3 random
integers from the Windows API random integer generator (in the range between 0 to nearly infinity), divide them
by 255 and preserve only the rest (% is the modulo-operation). The resulting values are random values just
between 0 and 255. Put them into a RGB-macro to form a random color. Store this color in a variable named
"multicolor" of type COLORREF.

pen.CreatePen(PS_SOLID, 20, multicolor); //Create a pen for solid lines of a thickness of 20
pixels and give it the random color.

double factor = (double)rand() / (double)RAND_MAX; //A random no. is divided by RAND_MAX ,
the biggest random no. that the random generator can produce. The result is a random value between 0.0 and
1.0.

if (factor < 0.25) factor = 0.25; // We do not want smaller factors than 1/4.

 3
double cosinus = radius_x * factor * cos(i * arcus); //this gives a x-value of a point
inside a circle.

double sinus = radius_x * factor * sin(i * arcus); //this gives a y-value of a point inside a
circle.

dc.MoveTo(p); // Start point of all lines is the middle point of the client area.

dc.LineTo(p.x + (int)cosinus, p.y + (int)sinus); // Draw a digital line to an end point
somewhere inside the ellipse.

pen.DeleteObject(); //Throw away the pen, for the next line we will buy a new one.

splash[i].x = p.x + int(cosinus * 0.8); splash[i].y = p.y + int(sinus * 0.8); //
Remember the end point by storing it in the point array (a litlle closer to the midpoint) for further use.

dc.SelectStockObject(WHITE_PEN); // take a preconstructed white pen from the operating system.

CBrush brush; // Declares a data structure named brush of type CBrush, that allows you to choose a color
for painting.

brush.CreateSolidBrush(RGB(255,0,0)); // Construct a red brush.

dc.SelectObject(brush); //Take it in your hand.

dc.Polygon(splash, nn); // Draw a white continuous polygonal line from vertex no. 0 to vertex no. 120
and fill its interior with red color. The Windows API function Polygon replace in a convenient way a lot of calls
of MoveTo and LineTo. It accepts infinite amounts of CPoints when they are placed in a linear array of
CPoints. The first parameter is the name of the array (which is a pointer on the first CPoint in the array) and the
second parameter has to indicate the size of the array. Take care that this parameter is correct, otherwise you
will obtain crazy results.

brush.DeleteObject(); //Throw the brush away and free its space.

dc.SetTextColor(RGB(0,0,255)); // in the future we want to write blue text.

dc.TextOut(p.x-30, p.y-8, "Splash !"); // Write the word "splash !" in the middle of the client
area.

Sleep(100); //Ask the operating system to stop the current thread for 100 milliseconds. This avoids a
hectic animation.

Invalidate(); //Ask the operating system to raise the Paint event again. When there are no other high
priority tasks the operating system will send a Paint-Message to our CChildView-instance which calls the
void CChildView::OnPaint()-event-handler-function again. Calling Invalidate() from inside the
OnPaint-event handler results in a sort of recursive loop which infinitely drives the animation. That's a primitive
method to produce (flickering) movements. In further chapters better methods with a Timer-object and with
double buffering will be proposed.

