
 1

Courses 2DCx, C3: Animation, Code Comments

Copyright © by V. Miszalok, last update: 23-02-2001

In CChildView.h in front of class CChildView : public CWnd

#define nMax 100 //nMax is the upper limit of the no. of vertices that can be stored. You can set
nMax to 1000 or even higher. It is just a vaste of memory to reserve space for too much vertices.
nMax does not influence the velocity of the animation as long as you do not fill its space by drawing.

#include < math.h > //needed for sin() and cos()

In CChildView.h inside class CChildView : public CWnd

CPoint old_vertex; // to store one vertex

CPoint p[nMax]; //to store nMax vertices

typedef struct { float x; float y; } FPoint; //type for 2D vector graphics coordinates

FPoint f[nMax]; //to store nMax vertices in float

int n, t; //n will be the counter of vertices and t the counter of timer events

BOOL done; //This flag indicates that the mouse drawing is over. It is initialized to false in
CChildView::OnCreate() and CChildView::OnLButtonDown() and changed to true in
CChildView::OnLButtonUp()

CRect minmax; //Will contain the surrounding rectangle of the drawing

float zoom, sinus, cosinus; //some help variables

In int CChildView::OnCreate(LPCREATESTRUCT lpCreateStruct)

This function is called by the operating system once at the first appearance of the client window.

done = false; //At first start nothing has been drawn.

zoom = 0.995f; //The animation starts with a down zoom of 0.5 percent.

double arcus = 3.14159 / 180.; //The animation rotates in steps of one degree.

sinus = float(sin(arcus)); //This is the sinus of one degree.

cosinus = float(cos(arcus)); //This is the cosinus of one degree.

SetTimer(1, 1, NULL); //Start a timer no. 1 with the fastest possible velocity. Parmaeter no. 1 is
the user no of this timer (64 parallel timers are possible). Parameter 2 requests an event every 1
msec. The operating system cannot react with 1000 events in a second but it will now produce such
events as often as possible. Parameter 3 is not used.

return 0; //Exit with the normal return value of 0.

 2

In void CChildView::OnPaint()
This function is called once at the first start of the program and later at any event that requires the
redrawing of the window (f.i. by Invalidate()).

CPaintDC dc(this); //Device context of the current client area

dc.TextOut(0, 0, "Press the left mouse button and draw something !"); //Text for
users who do not know what to do.

In void CChildView::OnLButtonDown(UINT nFlags, CPoint point

The users begins to draw something.

done = false; //Ignore the timer events during drawing.

old_vertex = p[0] = point; //Store the first vertex.

n = t = 1; //Reset the no. of vertices and the no. of timer events.

Invalidate(); //If there was a former drawing it is swept now.

In void CChildView::OnMouseMove(UINT nFlags, CPoint point

The user moves the mouse.

if (!nFlags) return; //Ignore the mouse movement if no mouse buttons are pressed.

int dx = point.x - old_vertex.x; //horizontal distance to the former vertex

int dy = point.y - old_vertex.y; //vertical distance to the former vertex

if (dx*dx + dy*dy < 100) return; //If the distance is less the 10 forget the point.

if (n > nMax - 2) return; //If there are already more than 98 vertices forget the rest.

CClientDC dc(this); //Device context of the current client area

dc.MoveTo(old_vertex); dc.LineTo(point); //Draw a straight line.

old_vertex = p[n++] = point; //Remember the current point as the latest one.

 3

In void CChildView::OnLButtonUp(UINT nFlags, CPoint point)

The user has drawn something and releases the left mouse button.

minmax.left = minmax.right = p[0].x; //The surrounding rectangle is intitalized around the first
vertex.

minmax.top = minmax.bottom = p[0].y; //The surrounding rectangle is intitalized around the first
vertex.

for (int i = 1; i < n; i++) //Take one by one any of the following vertices.

int x = p[i].x; //x is a help variable to shorten the writing of p[i].x.

int y = p[i].y; //y is a help variable to shorten the writing of p[i].y.

if (x < minmax.left) minmax.left = x; //New vertex is left of the old surrounding rectangle.

if (x > minmax.right) minmax.right = x; //New vertex is right of the old surrounding
rectangle.

if (y < minmax.top) minmax.top = y; //New vertex is above the old surrounding rectangle.

if (y > minmax.bottom) minmax.bottom = y; //New vertex is below the old surrounding
rectangle.

m.x = (minmax.left + minmax.right)/2; //mid of the rectangle

m.y = (minmax.top + minmax.bottom)/2; //mid of the rectangle

for (i = 0; i < n; i++) //Take any vertex

f[i].x = float(p[i].x - m.x); //scroll it to the left upper corner of the client area and change its
data type from integer to float.

f[i].y = float(p[i].y - m.y); //scroll it to the left upper corner of the client area and change its
data type from integer to float.

done = true; //The animation can start now.

 4

In void CChildView::OnTimer(UINT nIDEvent)

This function is started by the operating system as often as possible (under time control of parameter
2 of SetTimer(1, 1, NULL) called in CChildView::OnCreate()

if (!done) return; //do nothing during the time between OnLButtonDown and OnLButtonUp.

int i, ix, iy, ixmax=m.x, ixmin=m.x, width; //local help variables

CClientDC dc (this); //Device context of the current client area

for (i = 0; i < n; i++) //Take any vertex

float x = f[i].x * zoom; //Zoom it.

float y = f[i].y * zoom; //Zoom it.

f[i].x = cosinus * x - sinus * y; //Rotate it.

f[i].y = sinus * x + cosinus * y; //Rotate it.

ix = int(f[i].x) + m.x; //Scroll it back from the left upper corner of the ClientArea to its original
position.

iy = int(f[i].y) + m.y; //Scroll it back from the left upper corner of the ClientArea to its original
position.

if (!i) dc.MoveTo(ix, iy); //If this is the firt vertex then start the polgone here.

else dc.LineTo(ix, iy); //else draw a straight line from the former vertex to the current one.

if (ix < ixmin) ixmin = ix; //x-position of the leftmost vertex.

if (ix > ixmax) ixmax = ix; //x-position of the rightmost vertex.

width = ixmax - ixmin; //current horizontal extend of the polygone

CRect r; GetClientRect(r); //current space on the ClientArea

if (width > r.right - r.left) { MessageBeep(-1); Invalidate(); zoom = 0.95f; };
//The anmation is too big. Stop the zooming up and zoom down now in steps of 5 percent.

if (width < 20) { MessageBeep(-1); Invalidate(); zoom = 1.05f; }; //The anmation is
too small. Stop the zooming down and zoom up now in steps of 5 percent.

CString blabla; //Instance of the class for text strings.

blabla.Format("Timer=%d, Width=%d, Zoom=%f ", t++, width, zoom); //Write some
formatted text into the string.

dc.TextOut(0,20, blabla); //During the animation this text informes the user what is going on.

