Courses 2DCx, C3: Animation, Code Comments

Copyright © by V. Miszalok, last update: 23-02-2001

In cchildview.h in front of class cChildview : public CWnd

#define nMax 100 //nMax is the upper limit of the no. of vertices that can be stored. You can set
nMax to 1000 or even higher. It is just a vaste of memory to reserve space for too much vertices.
nMax does not influence the velocity of the animation as long as you do not fill its space by drawing.

#include < math.h > //needed for sin() and cos()

In cchildview.h inside class CChildview : public CWnd

Cpoint old vertex; // to store one vertex

CPoint p[nMax] ; //to store nMax vertices

typedef struct { float x; float y; } FPoint; //type for 2D vector graphics coordinates

FPoint f [nMax] ; //to store nMax vertices in float

int n, t; //nwill be the counter of vertices and t the counter of timer events

BOOL done; //This flag indicates that the mouse drawing is over. It is initialized to false in

CChildview: :OnCreate () and cChildView: :OnLButtonDown () and changed to true in
CChildview: :OnLButtonUp ()

CRect minmax; //Will contain the surrounding rectangle of the drawing

float zoom, sinus, cosinus; //some help variables

In int CChildvView: :OnCreate (LPCREATESTRUCT lpCreateStruct)
This function is called by the operating system once at the first appearance of the client window.

done = false; //At first start nothing has been drawn.

zoom = 0.995f; //The animation starts with a down zoom of 0.5 percent.

double arcus = 3.14159 / 180.; //The animation rotates in steps of one degree.

sinus = float(sin(arcus)); //Thisis the sinus of one degree.

cosinus = float(cos(arcus)); /[Thisis the cosinus of one degree.

SetTimer(1, 1, NULL); //Start atimer no. 1 with the fastest possible velocity. Parmaeter no. 1 is
the user no of this timer (64 parallel timers are possible). Parameter 2 requests an event every 1
msec. The operating system cannot react with 1000 events in a second but it will now produce such
events as often as possible. Parameter 3 is not used.

return 0; //Exit with the normal return value of 0.

In void cchildview: :OnPaint ()

This function is called once at the first start of the program and later at any event that requires the
redrawing of the window (f.i. by Invalidate()).

CPaintDC dc (this) ; //Device context of the current client area

dc.TextOut (0, 0, "Press the left mouse button and draw something !"); //Text for
users who do not know what to do.

In void CChildView: :OnLButtonDown (UINT nFlags, CPoint point
The users begins to draw something.

done = false; //lgnore the timer events during drawing.

old vertex = pl0] = point; //Store the first vertex.

n = t = 1; //Reset the no. of vertices and the no. of timer events.

Invalidate () ; //If there was a former drawing it is swept now.

In void CChildView: :OnMouseMove (UINT nFlags, CPoint point
The user moves the mouse.

if (!nFlags) return; //lgnore the mouse movement if no mouse buttons are pressed.

int dx = point.x - old vertex.x; //horizontal distance to the former vertex

int dy = point.y - old vertex.y; //vertical distance to the former vertex

if (dx*dx + dy*dy < 100) return; //If the distance is less the 10 forget the point.

if (n > nMax - 2) return; //If there are already more than 98 vertices forget the rest.

cclientDC dc(this) ; //Device context of the current client area

dc.MoveTo(old vertex); dc.LineTo(point) ; //Draw a straight line.

old vertex = pln++] = point; //[Remember the current point as the latest one.

In void CChildvView: :OnLButtonUp (UINT nFlags, CPoint point)
The user has drawn something and releases the left mouse button.

minmax.left = minmax.right = p[0].x; //The surrounding rectangle is intitalized around the first

vertex.

minmax.top = minmax.bottom = p[0].y; //The surrounding rectangle is intitalized around the first
vertex.

for (int i = 1; i < n; i++) //Take one by one any of the following vertices.

int x = p[i].x; //xis a help variable to shorten the writing of p[i] .x.

int vy = pl[il.y; /lyis a help variable to shorten the writing of p[i] ..

if (x < minmax.left) minmax.left = x; //New vertex is left of the old surrounding rectangle.

if (x > minmax.right) minmax.right = x; //New vertex is right of the old surrounding
rectangle.

if (y < minmax.top) minmax.top = y; //New vertex is above the old surrounding rectangle.

if (y > minmax.bottom) minmax.bottom = y; //New vertex is below the old surrounding
rectangle.

m.x = (minmax.left + minmax.right)/2; //mid of the rectangle

m.y = (minmax.top + minmax.bottom)/2; //mid of the rectangle

for (i = 0; i < n; i++) /[Take any vertex

f[i].x = float(plil.x - m.x); //scroll it to the left upper corner of the client area and change its
data type from integer to float.

f[i]l.y = float(plil.y - m.y); //scroll it to the left upper corner of the client area and change its
data type from integer to float.

done = true; //The animation can start now.

In void cchildvView: :OnTimer (UINT nIDEvent)

This function is started by the operating system as often as possible (under time control of parameter
2 of setTimer (1, 1, NULL) calledin cChildview: :OnCreate ()

if (!done) return; //do nothing during the time between onL.Buttonbown and OnLButtonUp.

int i, ix, iy, ixmax=m.x, ixmin=m.x, width; //local help variables

cclientDC dec (this) ; //Device context of the current client area

for (i = 0; i < n; i++) /[Take any vertex

float x = f[i]l.x * zoom; //Zoom it.

float y = f£[i]l.y * zoom; /[Zoom it.
fli]l.x = cosinus * x - sinus * y; //Rotate it.
flil.y = sinus * x + cosinus * y; //Rotate it.

ix = int (f[i].x) + m.x; //Scroll it back from the left upper corner of the ClientArea to its original
position.

iy = int (f[i].y) + m.y; //Scroll it back from the left upper corner of the ClientArea to its original
position.

if (!i) dec.MoveTo(ix, iy); //If thisis the firt vertex then start the polgone here.

else dc.LineTo(ix, iy); //else draw a straight line from the former vertex to the current one.

if (ix < ixmin) ixmin = ix; //x-position of the leftmost vertex.

if (ix > ixmax) ixmax = ix; //x-position of the rightmost vertex.

width = ixmax - ixmin; //current horizontal extend of the polygone

CRect r; GetClientRect (r); //current space on the ClientArea

if (width > r.right - r.left) { MessageBeep(-1); Invalidate(); zoom = 0.95f; };
/[The anmation is too big. Stop the zooming up and zoom down now in steps of 5 percent.

if (width < 20) { MessageBeep(-1); Invalidate(); zoom = 1.05f; }; //The anmationis
too small. Stop the zooming down and zoom up now in steps of 5 percent.

cstring blabla; //Instance of the class for text strings.

blabla.Format ("Timer=%d, Width=%d, Zoom=%f ", t++, width, zoom); //Write some
formatted text into the string.

dc.TextOut (0,20, blabla); //During the animation this text informes the user what is going on.

