
1

Courses IPCx, C2: Histogram, Code Comments

Copyright © by V. Miszalok, last update: 24-03-2002

In histo1Doc.h in front of class CHisto1Doc : public CDocument

#include < vector > //declares the dynamic arrays of the Standard Template Library STL. The

blanks inside the < > clause around the word vector may be suppressed. They are just necessary in

a HTML-Document otherwise HTML treats the word vector as HTML-Tag.

BITMAPFILEHEADER FH; //structure of overall length = 14 bytes containing 5 variables (see MSDN

and C6_Bitmap_FAQs)

BYTE IBytes[1200]; //untyped space for 1200 bytes for BitmapInfoHeader+Palette. You don't know

the types of BitmapInfoHeaders you will read and you don't know if there will be palettes or not. You
reserve 1200 bytes for the worst case: BITMAPV5HEADER (=136 byte) plus 256 palette entries (
=1024 bytes). 1160 bytes are wasted in case of traditional 24-Bit-Bitmaps but you can probably afford
that.

BITMAPINFOHEADER* pIH; //typed pointer allows the access to biSize, biWidth etc.

BITMAPINFO* pI; //This typed pointer is needed by function StretchDIBits. Structure BITMAPINFO

(see MSDN and C6_Bitmap_FAQs) is longer than BITMAPINFOHEADER but it contains in its first
part the structure BITMAPINFOHEADER completely . It allows access to both the BitmapInfoHeader

and (if biClrUsed > 0) the palette. If biClrUsed > 0 then StretchDIBits automatically accesses

and uses the palette with the help of this pointer.

std::vector< BYTE > Pixel; //name of a dyn. array of bytes aimed to store the original pixels

std::vector< BYTE > PixelBinary; //name of a dyn. array of bytes for pixels after thresholding

and binarisation

int Histogram[256]; //space for 256 integers

In histo1Doc.cpp inside the constructor CBitmap1Doc() you have to initialize 3 variables:

memset(IBytes, 0, sizeof(IBytes)); // clear the 1200 untyped bytes in order to mark the

absence of an image. Function CHisto1View::OnDraw() reads from here if you already loaded an

image or not.

pIH = (BITMAPINFOHEADER*) IBytes; //The typed pointer points now to the the head of

IBytes[1200]

pI = (BITMAPINFO*) IBytes; //The typed pointer points now to the the head of IBytes[1200] as pIH
does.

In histo1View.h you have to declare the following private variables of class CHisto1View :
public CView

CRect histo_r; //rectangle (256x100) to draw the histogram in the right lower corner of the image

int threshold; //interactive threshold separating the black background from the white foreground

BOOL MouseFlag; //used to remember if a threshold has been choosen via the left mouse button

2

In histo1View.cpp inside the constructor CHisto1View() you must intialize a variable

MouseFlag = false; Indicates, that there is no threshold yet.

In histo1Doc.cpp inside Serialize(CArchive& ar) inside the else clause: Code for reading an

image and for computing its histogram

ar.Read(& FH, sizeof(BITMAPFILEHEADER)); //Read 14 bytes from the harddisk.

if (FH.bfType != 'MB') { forget_it(); return; //The first 2 bytes form the reversed string of

BM.

if (FH.bfSize <= 54) { forget_it(); return; //A bitmap file contains at least 55 bytes.

if (FH.bfOffBits < 54) { forget_it(); return; //The shortest possible headers need 54

bytes.

int nBytesInfo = FH.bfOffBits - sizeof(BITMAPFILEHEADER); //That is the space left for the

BitmapInfoHeader and palette.

int nBytesPixel = FH.bfSize - FH.bfOffBits; //That is the space for all the pixels.

ar.Read(IBytes, nBytesInfo); //Read BitmapInfoHeader+palette from harddisk

if (!(pIH->biBitCount == 8 || pIH->biBitCount ==24)) { forget_it(); return; }

//Ignore all 1, 4, 16 and 32 bit bitmaps. ! = logical NOT and || = logical OR.

Pixel .resize(nBytesPixel); //Keep free the necessary space for all the original pixels in main

memory.

PixelBinary.resize(nBytesPixel); //Double the space for storing the black and white pixels.

ar.Read(&Pixel.front(), nBytesPixel); //Read all original pixels from the harddisk into the

main memory starting at the first adress of the dynamic byte array named Pixel.

memset(Histogram, 0, sizeof(Histogram)); //Clear the 256 histogram integers to zero values.

int sum, i, hmax = 0; //some local variables, one initialized by zero

std::vector< BYTE >::iterator pointer; //declaration of a pointer pointing arbitrarily into a dyn.

byte array. Such special pointers are called iterators.

switch (pIH->biBitCount) //jump depending on biBitCount, which can be 8 or 24.

case 8: for (pointer=Pixel.begin(); pointer < Pixel.end(); pointer++) //Loop

through all pixels of a 8-bit-bitmap.

Histogram[*pointer]++; //Take the gray value (or the color index) and increment one of the

counters of the array Histogram.

break; //This is a jump out of and beyond the end of the switch clause. If you forget this statement,

the program continues with case 24 and computes a strange Histogram.

case 24: for (pointer=Pixel.begin(); pointer < Pixel.end(); pointer+=3) //Loop

through all pixels of a 24-bit-bitmap.

sum = *pointer + *(pointer+1) + *(pointer+2); //Add the 3 values for blue, green and red.

3

Histogram[sum / 3]++; //Divide the sum by 3 and increment one of the counters of the array

Histogram.

for (i = 0; i < 256; i++) if (Histogram[i] > hmax) hmax = Histogram[i]; //Find

out hmax = the most common gray value of the image = highest column of Histogram.

for (i = 0; i < 256; i++) Histogram[i] = (100*Histogram[i])/hmax; //Scale hmax to

100 and all other columns of Histogram linearily.

In histo1Doc.cpp inside void CHisto1Doc::forget_it()() //Small private member function of
CHisto1Doc

memset(IBytes, 0, sizeof(IBytes)); //If this was not a reasonable bitmap, then clear all 1200

bytes of IBytes to zero.

for (int i=0; i < 10; i++) MessageBeep(-1); //This is a loud protest against misuse.

In histo1View.cpp inside void CHisto1View::OnDraw(CDC* pDC) //

CHisto1Doc* pDoc = GetDocument(); //This line was prepared by Visual Studio. Keep it. It give us

a pointer to reach the variables which have been declared in class CHisto1Doc

if (!pDoc->pIH->biSize) { pDC->TextOut(0,0,"Open a *.BMP file !"); return; }
//Advice to users who do not know what they should do after they started the program.

BYTE * pointer; //Declares a local pointer.

if (!MouseFlag) pointer = &(pDoc->Pixel..front()); //If nobody presses the left mouse

button upon the rectangle showing the histogram in the right lower orner of the image , set the pointer
to the first pixel of the original image.

else pointer = &(pDoc->PixelBinary.front()); //If we have a threshold, set the pointer to first

pixel of the binary image.

CRect R; GetClientRect(R); //Find out the current dimensions of the client area that could be

covered with the image.

StretchDIBits(pDC->GetSafeHdc(), //Draw the image into the graphics board and on the

screen. The first parameter has to be a handle to the Device Context.

0, 0, R.Width(), R.Height(), //Parameters 2,3,4,5 of StretchDIBits indicate the rectangular

destination dimensions.

0, 0, pDoc->pIH->biWidth, pDoc->pIH->biHeight, //Parameters 6,7,8,9 of StretchDIBits
indicate the rectangular original source dimensions.

pointer, pDoc->pI, //Parameter 10 has to point to the first pixel and parameter 11 must be a typed

pointer to a BitmapInfo-structure (BitmapInfoheader plus palette).

DIB_RGB_COLORS, SRCCOPY); //Parameters 12 and 13 are constants which influence the use of

colors and transparency (see MSDN).

histo_r.right = R.Width() - 10; //Right border of the histogram box near the right side of the

image.

histo_r.left = histo_r.right - 256; //Left border is 256 pixels left of the right border.

4

histo_r.bottom = R.Height() - 10; //Bottom of the box near the bottom of the image.

histo_r.top = histo_r.bottom - 100; //Top of the box is 100 pixel above the bottom.

pDC->Rectangle(histo_r); //Draw a white rectangle surrounded by a black border.

pDC->TextOut(histo_r.left+1, histo_r.top+1, "click and move here!"); //Display this

text inside the rectangle.

for (int i = 0; i < 256; i++) //Draw one perpendicular black line for each of the 256 entries

of Histogram

pDC->MoveTo(histo_r.left + i, histo_r.bottom); //from bottom

pDC->LineTo(histo_r.left + i, histo_r.bottom - pDoc->Histogram[i]); //in upward

direction.

if (MouseFlag) //If somebody had pressed the left mouse button over the histogram box, you

have to visualize the position of the interactive threshold.

pDC->MoveTo(histo_r.left + threshold, histo_r.top); //Show the current threshold as

black line from bottom

pDC->LineTo(histo_r.left + threshold, histo_r.bottom); //to top

In void CHisto1View::OnLButtonDown(UINT nFlags, CPoint point) //The user presses the left

mouse button.

if (!histo_r.PtInRect(point)) return; //There is nothing to do, if the mouse is not over

the histogram.

MouseFlag = true; //Inform OnDraw to display the binary image instead of the original one.

5

In void CHisto1View::OnMouseMove(UINT nFlags, CPoint point) //This function computes the

current threshold and the current binary image and calls OnDraw via Invalidate()

if (!nFlags) return; //Do nothing if the user moves the mouse without pressing a button.

if (!histo_r.PtInRect(point)) return; //Do nothing if the mouse is not over the

Histogram.

CHisto1Doc* pDoc = GetDocument(); //You need a pointer to class CHisto1Doc in order to access

the BitmapInfoHeader and the pixels.

if (!pDoc->pIH->biSize) return; //There is no image at all.

threshold = point.x - histo_r.left; //The threshold depends on the horizontal position relative

to the left border of the histogram box.

std::vector< BYTE >::iterator pointer1 = pDoc->Pixel .begin(); //Pointer to the first pixel

of the original image

std::vector< BYTE >::iterator pointer2 = pDoc->PixelBinary.begin(); //Pointer to the

first pixel of the binary image

switch (pDoc->pIH->biBitCount) //Jump depending on biBitCount which may be 8 or 24.

case 8: for (; pointer1 < pDoc->Pixel.end(); pointer1++, pointer2++) //Go through

all pixels of the 8-bit-image

if (*pointer1 > threshold) *pointer2 = 255; //If the grey value is above the threshold,

make it completly white.

else *pointer2 = 0; //Otherwise set it black.

break; //Jump out of and beyond the end of the switch-clause.

case 24: for (; pointer1 < pDoc->Pixel.end(); pointer1+=3, pointer2+=3) //Go

through all RGBTriples of the original image

int sum = *pointer1 + *(pointer1+1) + *(pointer1+2); //Add the red, green and blue values

together.

if (sum > 3*threshold) *pointer2=*(pointer2+1)=*(pointer2+2)=255; //If the sum is > 3

thresholds, set the RGBTRIPLE to white,

else *pointer2=*(pointer2+1)=*(pointer2+2)= 0; //otherwise set it to black.

Invalidate(false); //Ask the operating system to redraw the client area. Erasing the former

content is not necessary.

In void CHisto1View::OnLButtonUp(UINT nFlags, CPoint point) //The user releases the

mouse button.

MouseFlag = false; //No more thresholding and binary images.

Invalidate(false); //Redraw the original image.

