
 1

2D-Vector Graphics 
Copyright © by V. Miszalok, last update: 26-02-2010 

  Vertex 
  Polygon 
  Length of a polyline 
  Perimeter of a closed polygon 
  Area of a closed polygon 
  Bounding box of a polygon 
  Center of a polygon 
  2D polygon scroll 
  2D polygon zoom 
  2D polygon rotation 
  Concentric splash 
  Bézier Approximation 
  Cubic Spline Interpolation 
  Programming curves in parametric form 

Vertex 
Vertex (latin corner, plural vertices) = vector = point = corner point = POINT is the atomic component of vector 
graphics. Simplest case: two coordinates containing the two distances from the left and of the upper edge of 
window. 
Alternatives: : 
1) 2D-Vertices with 2 float-coordinates:  PointF{ float x; float y; } 
2) 2D-Vertices with 2 integer-coordinates: Point { int x; int y; } 
3) 3D-Vertices with 3 float-coordinates: Vector3{ float x; float y; float z; } 
4) 3D-Vertices such as Vector3 plus color, normal, texture coordinate etc. (see: DirectX 3D-Vertex Formate) 
For 2D-Graphics most often type 1) is used, because this data type permits stepless zoom and rotation and is 
free from rounding errors. 
Simple painting programs use data type 2), because the mouse events supply only integer coordinates and 
painting instructions like e.g.. DrawLine() require integer coordinates. 

Polygon 
= most important data type of vector graphics is an ordered quantity of vertices p[0], p[1]... p[i]... 
p[n-1], whereby the vertices p[i] are connected by lines: DrawLine( p[i], p[i+1] ). 
Alternatives: 
a) polyline: start- and end-point are not identical. Open polygons have a length, but no perimeter nor area. 
b) polygon: start-point identical with end-point. That has the consequence that closed n-polygons have to be 
coded by n+1 Vertices. A triangle has 4 vertices P0, P1, P2, and P3==P0 ! Closed polygons have a perimeter 
and an area. 
Transformation a) → b): It's possible to close any polyline by copying the no. 0 vertex p[0] to the end of the 
array. 
c) convex polygon: For any arbitrary two points q0 and q1 from the inside: The connecting line segment is fully 
inside the polygon. 
d) concave polygon: There are points q0 und q1 whose connecting line segment is (partly) outside. 
e) nonsimple polygon: Intersecting lines occur. Such polygons do not bound a simply connected region in the 
plane. 
Samples:  

 



 2
 
Order: The vertices are counterclockwise ordered if a traversal of the vertices keeps the bounded region to the 
left. 
 
Polygons are programmed and stored in the form of arrays. 
There are two basic types of 2D-polygon arrays: 
a) Polygon as array of fixed length: const Int32 n = 100; PointF[] p = new PointF[n]; 
Advantage: simple and fast accesses. 
Disadvantage: n must be known. 
b) Polygon as dynamic array: ArrayList p = new ArrayList(); p.Add( p0 ); 
Advantage: Simple insert or delete of vertices at any time. 
Disadvantages: 1) Namespace using System.Collections; is necessary. 
2) Access is slower than with fixed-length array and no access with pointers, because the vertices are not 
memory-compact, but are stored as a concatenated list. 
3) Typecasting = explicit specification of type is necessary (although no conversion of type takes place) on 
reading from the array: p0 = (PointF)p[i];, because ArrayLists may contain all possible objects in 
multicolored order. 
Tip for painting programs: Store doubly: Collect the vertices first in a dynamic array and copy them later into a 
fixed array. 
 
Four examples of storage and access of polygons 
The following 6 declarations apply to all 4 examples: 
using System.Collections; //contains ArrayList 
const Int32 n = 100; //length of fixed array 
Random r = new Random(); //random generator to fill the arrays 
Int32 i; 
Pen mypen = new Pen( Color.Red, 1 ); 
Graphics g = this.CreateGraphics(); 
 
1) Example: Point-array of fixed length with integer coordinates 
   Point[] p = new Point[n]; 
   for ( i=0; i < n; i++ ) //write into array 
   { p[i].X = r.Next(100); p[i].Y = r.Next(100); } 
   for ( i=0; i < n-1; i++ ) //read from array 
     g.DrawLine( mypen, p[i], p[i+1] ); 
 
2) Example: Point-dynamic array of variable length with integer coordinates 
   ArrayList p = new ArrayList(); 
   for ( i=0; i < n; i++ ) //write into array 
     p.Add( new Point( r.Next(100), r.Next(100) ) ); 
   for ( i=0; i < p.Count-1; i++ ) //read from array 
     g.DrawLine( mypen, (Point)p[i], (Point)p[i+1] ); 
 
3) Example: PointF-array of fixed length with float coordinates 
   PointF[] p = new PointF[n]; 
   for ( i=0; i < n; i++ ) //write into array) 
   { p[i].X = 100f*(Single)r.NextDouble(); p[i].Y = 100f*(Single)r.NextDouble(); } 
   for ( i=0; i < n-1; i++ ) //read from array 
   { Int32 x0 = Convert.ToInt32( p[i  ].X ); 
     Int32 y0 = Convert.ToInt32( p[i  ].Y ); 
     Int32 x1 = Convert.ToInt32( p[i+1].X ); 
     Int32 y1 = Convert.ToInt32( p[i+1].Y ); 
     g.DrawLine( mypen, x0, y0, x1, y1 ); 
   } 
 
4) Example: PointF-dynamic array of variable length with float coordinates 
   ArrayList p = new ArrayList(); 
   for ( i=0; i < n; i++ )) //write into array 
     p.Add( new PointF( 100f*(Single)r.NextDouble(), 100f*(Single)r.NextDouble() ) ); 
   for ( i=0; i < p.Count-1; i++ )) //read from array 
   { Int32 x0 = Convert.ToInt32( ((PointF)p[i  ] ).X ); 
     Int32 y0 = Convert.ToInt32( ((PointF)p[i  ] ).Y ); 
     Int32 x1 = Convert.ToInt32( ((PointF)p[i+1] ).X ); 
     Int32 y1 = Convert.ToInt32( ((PointF)p[i+1] ).Y ); 
     g.DrawLine( mypen, x0, y0, x1, y1 ); 
   } 



 3
Length of a polyline 
A dynamic vertex array is given: ArrayList p = new ArrayList(); filled with objects of type Point 
We want to know Double length; 
We use the Pythagorean theorem: In the right triangle the hypotenuse is equal to the root of the sum of the 
squares of the legs. The sum of all hypotenuses is the overall length. 
Double length = 0.0; 
Point p0 = (Point)p[0]; 
for ( Int16 i=1; i < p.Count; p++ ) //loop doesn't start at 0 ! 
{ Point p1 = (Point)p[i]; 
  Double dx = p1.X - p0.X; //horizontal leg 
  Double dy = p1.Y - p0.Y; //vertical leg 
  length += Math.Sqrt( dx*dx + dy*dy ); //hypotenuse 
  p0 = p1; 
} 

dx1

dx2

dx3 dx4
dy1

dy2

dy3

dy4

x

y  

Perimeter of a closed polygon 
A dynamic vertex array is given: ArrayList p = new ArrayList(); filled with objects of type Point 
We want to know Double perimeter; 
At first let's copy the start point of the polygon to its tail, if this is not the case already. 
Double perimeter = 0.0; 
Point p0 = (Point)p[0]; 
if ( p0 != (Point)p[p.Count-1] ) p.Add( p0 ); //close polygon 
for ( Int16 i=1; i < p.Count; p++ ) //loop doesn't start at 0 ! 
{ Point p1 = (Point)p[i]; 
  Double dx = p1.X - p0.X; //horizontal leg 
  Double dy = p1.Y - p0.Y; //vertical leg 
  perimeter += Math.Sqrt( dx*dx + dy*dy ); //hypotenuse 
  p0 = p1; 
} 

x

y

P0=P4

P1
P2

P3

 

Area of a closed polygon 
A dynamic vertex array is given: ArrayList p = new ArrayList(); filled with objects of type Point 
We want to know Double area; 
At first let's copy the start point of the polygon to its tail, if this is not the case already. 
Double area = 0.0; 
Point p0 = (Point)p[0]; 
if ( p0 != (Point)p[p.Count-1] ) p.Add( p0 ); //close polygon 
for ( Int16 i=1; i < p.Count; p++ ) //loop doesn't start at 0 ! 
{ Point p1 = (Point)p[i]; 
  Double dx = p1.X - p0.X; //width of trapezoid 
  Double my = (p1.Y + p0.Y) / 2.0; //average y-value 
  area += dx * my; //area of trapezoid 
  p0 = p1; 
} 



 4

x

y

P0

P1

x

y P1
P2

x

y P2

P3

x

y

P4 P3

x0 x1

y1

y0

Both gray 
surfaces have 
identical areas

= dx*dy

This area is 
positive since 
x2 > x1

This area is 
positive 
since 

x3 > x2

This area is 
negative 

since
 x4 < x3 

sum of the 4 trapezoid areas = area of the polygon 

dx = x1-x0
my = (y1+y0)/2

x

y

P0=P4

P1
P2

P3

 
Area can result in a negative value. Its sign depends on the direction of rotation. If the area lies left from the 
border line (counterclockwise orientation), the area will be positive, otherwise negative. If the result should be 
independent of the orientation and positive, then write behind the loop: 
area = Math.Abs( area ); 

Bounding box of a polygon 
= smallest axis-parallel prison of a polygon. It replaces the polygon in questions whether the mouse is over or if 
two polygons collide. 
A dynamic vertex array is given: ArrayList p = new ArrayList(); filled with objects of type Point 
We want to know Rectangle box; //bounding box; 
At first we set the four walls of the prison xmin, ymin, xmax, ymax at the start point fo the polygon. 

Int32 xmin, ymin, xmax, ymax; 
xmin = xmax = ( (Point)p[0] ).X; 
ymin = ymax = ( (Point)p[0] ).Y; 
for ( int i=1; i < p.Count; i++ ) 
{ Point p0 = (Point)p[i]          //next vertex 
  if ( p0.X < xmin ) xmin = p0.X; //move the left wall to the left 
  if ( p0.X > xmax ) xmax = p0.X; //move the right wall to the right 
  if ( p0.Y < ymin ) ymin = p0.Y; //raise the upper wall 
  if ( p0.Y > ymax ) ymax = p0.Y; //sink the lower wall 
} 
box = new Rectangle( xmin, ymin, xmax-xmin, ymax-ymin ); 

x

y

xmin

ymax

ymin

xmax

 

 

Remark: 
In the class Rectangle the properties X und Y exist also under the 
names Left und Top. 
In the example: 
xmin = box.X = box.Left und 
ymin = box.Y = box.Top. 

 



 5
Determining collisions is difficult if the polygons have complicated forms. It is much simpler to detect the 
collision of the bounding boxes. Example: 
A moveable rectangle is given: Rectangle box and an array of stationary rectangles Rectangle[] boxes 
= new Rectangle[n];. 
Question: Is box colliding with somebody ? 

Solution step by step: 
for ( int i=0; i<n; i++ ) 
{ if ( box.X > boxes[i].X + boxes[i].Width  ) continue; //box is too right 
  if ( box.Y > boxes[i].Y + boxes[i].Height ) continue; //box is too low 
  if ( boxes[i].X > box.X + box.Width       ) continue; //box is too left 
  if ( boxes[i].Y > box.Y + box.Height      ) continue; //box is too high 
  Debug.WriteLine( "box collided with " + i.ToString() + ".\r\n" ); 
} 
Solution with the Rectangle.IntersectsWith - method: 
for ( int i=0; i<n; i++ ) 
  if ( box.IntersectsWith( boxes[i] ) ) Debug.WriteLine( "box collided with " + 
i.ToString() + ".\r\n" ); 

In mouse events the graphic objects are replaced in the same way by their bounding boxes. 
Example: Is the mouse e.X, e.Y inside a graphic object i with the bounding box boxes[i] ? 

Solution with the Rectangle.Contains - method: 
for ( int i=0; i<n; i++ ) 
  if ( boxes[i].Contains( e.X, e.Y ) ) Debug.WriteLine("The mouse points at " + 
i.ToString() + ".\r\n" ); 

Addendum: See: www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html 
1970 Randolph Franklin published the following ingenious algorithm to find out if a point x,y lies inside a 
polygon p (not only inside its bounding box): 

int point_in_polygon(int n, float xp[], float yp[], float x, float y) //p → arrays 
xp[n],yp[n] 
{ int i, j, c = 0; 
  for (i = 0, j = n-1; i < n; j = i++) 
    if ((((yp[i] <= y) && (y < yp[j])) || ((yp[j] <= y) && (y < yp[i]))) && 
        (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i])) c = !c; 
  return c; //c=-1 → x,y is outside; c=0 → x,y is on an edge; c=1 → x,y is inside 
} 



 6

Center of a polygon 
It is better to use float-coordinates (type PointF) instead of integer-coordinates (type Point), since the 
computation of the midpoint requires a division which seldom furnishes an integer. 
There are four definitons of midpoints mp, which can be far away from each other: 

1)  Midpoint of the bounding box 
PointF mp = new PointF( box.X + box.Width/2f, box.Y + box.Height/2f ); which is 
identical with: 
PointF mp = new PointF( xmin + (xmax-xmin)/2f, ymin + (ymax-ymin)/2f ); 
Disadvantage: mp depends on the presence of a "tail". 

2)  Center of gravity = centroid = geocenter = barycenter 
There are three common definitions of the "center of gravity" of a polygon p: 
2a) Center of vertices, 2b) Center of wire rods, 2c) Center of a sheet of uniform density. 
Most students are first introduced to the center of gravitiy in reference to a point in a triangle. Since in a 
triangle all three definitions give the same point, they are often confused about the fact that the three 
centers of gravity are usually different points in non-symmetric polygons. Common center of gravity of a 
triangle: 
mp.X = ( p[0].X + p[1].X + p[2].X ) / 3f; 
mp.Y = ( p[0].Y + p[1].Y + p[2].Y ) / 3f; 

2a) Center of vertices distributes the "mass" of p evenly to its vertices. 
Computation: At open polygons sum up all x and y and divide the sums by count, 
at closed polygons ignore the last vertex, in order to not counting it twice, or keep the last but ignore no. 0.
Int32 count; 
if ( (Point)p[0] != (Point)p[p.Count-1] ) count = p.Count; else count = 
p.Count-1; 
for ( i=0; i < count; i++ 
{ Point p0 = (Point)p[i]; 
  mp.X += p0.X; 
  mp.Y += p0.Y; 
} 
mp.X /= count; 
mp.Y /= count; 
Disadvantage: mp depends on the local densities of the vertices. 

2b) Center of wire rods 
To find the center of uniform rods along the perimeter of a closed polygon, replace each side with a point 
mass equal to the length of the line located at its midpoint. 
Point p0 = (Point)p[0], p1; 
PointF mp = new PointF( 0f, 0f ); 
float length, perimeter = 0f; 
for ( i=1; i < p.Count; i++ ) 
{ p1 = (Point)p[i]; 
  int dx = p[i].X - p[i-1].X; 
  int dy = p[i].Y - p[i-1].Y; 
  length = (float)Math.Sqrt( dx*dx + dy*dy ); 
  mp.X += length * ( p0.X + dx/2f ); 
  mp.Y += length * ( p0.Y + dy/2f ); 
  perimeter += length; 
  p0 = p1; 
} 
mp.X /= perimeter; 
mp.Y /= perimeter; 
Disadvantage: mp depends on the presence of narrow fjords. 

2c) Center of a sheet of uniform density 
Simply divide the closed polygon into non-overlapping triangles (=tesselation) and treat the system as a set 
of point masses at the centroids of these triangles with a mass equal to the area of the triangle. 
Advantage: mp = real center of mass at which the polygon is stable, or balance, under the influence of 
gravity.  

 



 7
2D polygon scroll 
Given: 
1) a polygon vertex count: const Int32 n = 100; 
2) PointF pold = new PointF[n]; 
3) PointF pnew = new PointF[n]; //result 
Operation: 
2D-Scroll = 2D-Translation with Single dx, dy. 
for ( i=0; i < pold.Count; i++ )) 
{ pnew[i].X = pold[i].X + dx; 
  pnew[i].Y = pold[i].Y + dy; 
} 
We can do it with one polygon: 
for ( i=0; i < p.Count; i++ 
{ pold[i].X += dx; 
  pold[i].Y += dy; 
} 

2D polygon zoom 
Operation: 2D-Zoom = 2D-Scaling with Single zoomx, zoomy. 
The polygons pold and pnew must have float-coordinates (type: PointF). 
for ( i=0; i < pold.Count; i++ )) 
{ pnew[i].X = pold[i].X * zoomx; 
  pnew[i].Y = pold[i].Y * zoomy; 
} 
We can do it with one polygon: 
for ( i=0; i < p.Count; i 
{ pold[i].X *= zoomx; 
  pold[i].Y *= zoomy; 
} 
zoomx < 1.0f = makes a scale down and a shift to the left 
zoomy < 1.0f = makes a scale down and a shift upward 
zoomx > 1.0f = makes a scale up and a shift to the right 
zoomy > 1.0f = makes a scale up and a shift downward 
Example: 

x

y

pold

pnew

zoomx = zoomy = 2.0f

 
In most cases the shifts are unwanted, since one wants to zoom on place. 
For this purpose a midpoint mp is needed: 
1) Shift the polygon until its midpoint mp lies on the origin. 
2) Zoom around the origin. 
3) Back shift. 



 8

x

y

mp mp

pold 
at

start

pold shifted 
to the 
origin

pnew zoomed
pnew back 
shifted

 
for ( i=0; i < pold.Count; i++ )) 
{ pnew[i].X = (pold[i].X - mp.X) * zoomx + mp.X; 
  pnew[i].Y = (pold[i].Y - mp.Y) * zoomy + mp.Y; 
} 
We can do it with one polygon: 
for ( i=0; i < pold.Count; i 
{ pold[i].X -= mp.X; 
  pold[i].Y -= mp.Y; 
  pold[i].X *= zoomx; 
  pold[i].Y *= zoomy; 
  pold[i].X += mp.X; 
  pold[i].Y += mp.Y; 
} 

2D polygon rotation 
Operation: 2D-Rotation clockwise with Single alpha or Double alpha. 
Rotation axis of the 2D-Rotation is the invisible Z-Axis, which pierces perpendicularily the display in the left 
upper corner of the client area. 
The polygons pold und pnew must have float coordinates (type: PointF). 
Double arcus = alpha * 2.0 * Math.PI / 360.0; //alpha in radian measure 
Single cosinus = (Single)Math.Cos( arcus );   //cosinus(alpha) as float 
Single sinus   = (Single)Math.Sin( arcus );   //  sinus(alpha) as float 
for ( i=0; i < pold.Count; i++ )) 
{ pnew[i].X = pold[i].X * cosinus - pold[i].Y * sinus; 
  pnew[i].Y = pold[i].X * sinus + pold[i].Y * cosinus; 
} 
We can do it with one polygon, but we need a help variable, since pold[i].X is needed twice: 
for ( i=0; i < p.Count; i+ 
{ Single help = pold[i].X * cosinus - pold[i].Y * sinus; 
  pold[i].Y   = pold[i].X * sinus + pold[i].Y * cosinus; 
  pold[i].X   = help; 
} 
If you want to rotate counterclockwise, exchange the signs between both sinus-products: 
for ( i=0; i < pold.Count; i++ ) 
{ pnew[i].X =  pold[i].X * cosinus + pold[i].Y * sinus; 
  pnew[i].Y = -pold[i].X * sinus + pold[i].Y * cosinus; 
} 
 



 9
Example 90 degrees: pnew disappears from the window by its rotation to the left. 

x

y

pold

90 degrees rotation

P0

P0

P1 P2P1

P2

pnew

 
Warning: Similar to 2D-zoom each 2D-rotation is linked with a shift, which nearly never is wanted. 
If you want to rotate in place, you have to shift as we did before and after zooming: 
1) Shift the polygon until its midpoint mp lies on the origin. 
2) Rotate around the origin. 
3) Back shift. 
for ( i=0; i < pold.Count; i++ )) 
{ Single x = pold[i].X - mp.X; 
  Single y = pold[i].Y - mp.Y; 
  pnew[i].X = x * cosinus - y * sinus + mp.X; 
  pnew[i].Y = x * sinus + y * cosinus + mp.Y; 
} 

Concentric splash 
= pencil of lines, where all lines start from a midpoint and all endpoints are distributed evenly on a circle. 
Given: 
1) midpoint: Point mid = new Point(); 
2) radius: Double radius = 100; 
3) number of rays of the star: Int16 const nn = 120; 
4) color and thickness of the rays: Pen mypen = new Pen( Color.Red, 5 ); 
5) end cap of the lines: cut, rounded, arrow etc: 
   mypen.EndCap = System.Drawing.Drawing2D.LineCap.DiamondAnchor; 
Knowing the angle arcus of a ray (in radian) one obtain x,y using the so called parameter formula of the circle: 
x = mid.X + radius * Math.Cos( arcus ); 
y = mid.Y + radius * Math.Sin( arcus ); 

(x, y)

radius   Cos(arcus)

arcus
radius   Sin(arcus)

*

*

mid.X

mid.Y

x

y

radius

 
The angle in degrees between two adjacent rays is 360.0 / nn, the same angle in radian measure is: 
Double arcus_1 = 2.0 * Math.PI / nn; 
We need memory space for nn endpoints: 
Point[] star = new Point[nn]; 
and fill this array with the loop: 
for ( Int16 i=0; i < nn; i++ ) 
{ Double arcus_i = arcus_1 * i; 
  Double x = radius * Math.Cos( arcus_i ); 
  Double y = radius * Math.Sin( arcus_i ); 
  star[i].X = mid.X + ConvertToInt32( x ); 
  star[i].Y = mid.Y + ConvertToInt32( y ); 
  g.DrawLine( mypen, mid.X, mid.Y, star[i].X, star[i].Y ); 
} 



 10
Bézier Approximation 
Problem: Polygons are awkward (when their vertices are connected by straight lines) but real world objects 
mostly have smoothly curved borders. 
Consequence: Its often better to use curves instead of straight lines and to allow the curves to bypass some 
vertices rather than to exactly meet all of them. 
A very popular solution has been developed 1962 by Pierre Bézier and Paul de Casteljau who use polynomials 
of degree n-1 to approximate polygons with n vertices. 
see: Wikipedia: Bézier curve 

 

Sample with n = 5: 
The Bézier curve starts at p[0] of the polygon and ends at 
p[4]. The curve bypasses p[1], p[2] and p[3]. 
These vertices just provide attraction information and influence 
the local curvatures.  

 

  

 
Sample with n = 4: 
A cubic Bézier curve (= polynomial of degree 3 = parabola of type y = a3*x3 + 
a2*x2 + a1*x + a0 covers 4 vertices. 
see: Living Math Bézier applet  

 
Piece by piece approximation 
In many cases there is no need to cover the complete polygon from p[0] to p[n-1] by a Bézier curve of 
degree n-1. Piece by piece approximation with sharp edges between the pieces is a widely used alternative. 
True Type Fonts TTF outline their characters in such a way with quadratic polynomials that cover 3 vertices. 
PostScript makes the same with cubic polynomials that cover 4 vertices 

p[0]

p[1]

p[10]
p[9]

p[8]

p[7]

p[6]
p[5]p[4]

p[3]

p[2]

p[11]
p[12]

 

  

 
Sample: Outline of character P of a scalable PostScript font composed by four 
consecutive cubic Bézier curves: 
1: p[0], p[1], p[2], p[3] form the 1. cubic Bézier curve. 
Since they are collinear the left border of P is just a straight line. 
2: p[3], p[4], p[5], p[6] form the 2. cubic Bézier curve. 
Since they are collinear the lower border of P's foot is a straight line. 
3: p[6], p[7], p[8], p[9] form the 3. cubic Bézier curve. 
Since they are collinear the right border of P's leg is a straight line. 
4: p[9], p[10], p[11], p[12]=p[0] form the 4. cubic Bézier curve. p[10] 
and p[11] bend the curvature. 
 
Advantage 1: Straight lines, sharp edges and curves are coded within a simple 
polygon. 
Advantage 2: Simple curves are well defined by only four vertices: p[9], p[10], 
p[11], p[12]=p[0]. 
Advantage 3: Scroll, Zoom and Rotate operations are possible as with any polygon.
Disadvantage 1: Vertices p[1], p[2], p[4], p[5], p[7] and p[8] are 
redundant but obligatory. 
Disadvantage 2: A Bézier approximated polygon has to contain a certain no. of 
vertices: n=4 or 7 or 10 or 13 or 16 etc. 
Disadvantage 3: Bézier coefficients a3, a2, a1 and a0 have to be computed from any 
piece of 4 vertices. 

Since the quadratic and cubic Bézier curves are needed by nearly all fonts, the modern microprocessors 
provide (very fast) micro programs to compute the quadratic Bézier coefficients a2, a1 and a0 or the cubic Bézier 
coefficients a3, a2, a1 and a0. You can directly call the micro-program for cubic approximation in C# by 
DrawPolyBezier( Pen pen, PointF[] p ); where p.Length must be 4 or 7 or 10 or 13 or 16 etc. 
Rational Bézier curves 
Some curves like the circle cannot be described by a Bézier curve or a piecewise Bézier curve. To describe 
these other curves, additional degrees of freedom are offered by Rational Bézier curves. A rational Bézier curve 
is a fraction of two polynomials and adds adjustable weights to the vertices.  



 11
Cubic Spline Interpolation 
Etymology: Spline is a shipbuilding yard word describing the bent of arbors or steel plates of the hull of a ship. 
Cubic splines connect 4 vertices by polynomials of degree 3 as cubic Bézier curves do. But they have additional 
interesting properties. 

 

New properties: 
1. Splines hit all vertices exactly. 
2. Splines avoid any discontinuity at the butt joint vertex 
(here: p[3]) between two polynomials. 
3. Splines produce the illusion of one single polynomial of 
degree n-1 and hide the presence of a sequence of short 
single polynomials of degree 3. 
 
Sample: 
The 1st polynomial starts at p[0] with a selectable slope, 
hits p[1] and p[2] and ends at p[3]. 
The 2nd polynomial starts at p[3] with the slope (1. 
derivative) and curvature (2. derivative) of 1st 
polynomial's end. 
There is no visible discontinuity at p[3] since the 1st and 
2nd derivatives of both polynomials at p[3] are identical.
see: Wikipedia: Spline (mathematics) 

 
In addition to quadratic and cubic Bézier curves, modern microprocessors provide (very fast) micro programs to 
compute cubic splines from polygons. 
Transitions between Bézier curves and splines 
Bézier curves and splines have a common mathematical basis. Any transitions between both concepts are 
possible by giving a weight to any vertex via Rational Bézier curves. The weight codes the traction that a vertex 
exercises on the curve. With high weights Rational Bézier curves behave like splines. 
NURBS = Non Uniform Rational B-Splines 
are generalizations of non-rational B-splines and non-rational and rational Bezier curves and surfaces and 
provide the flexibility to design a large variety of 2D- and 3D-shapes. 

Programming curves in parametric form 
In computer graphics all sorts of 2D-lines (straight, parabolas, ellipses, Bézier curves, splines etc.) are written in 
form of two equations with a parameter t. 
Example 1: A straight line between two vertices x0,y0 and x1,y1 in parametric form: 
x = x0 + t * ( x1 - x0 ); 
y = y0 + t * ( y1 - y0 ); 
where t takes any value between 0.0 and 1.0. 
If you want to compute 100 points between x0,y0 and x1,y1 you just write the simple program: 
float[] x = new Single[100]; float[] y = new Single[100]; 
for ( int i=0; i < 100; i++ ) 
{ float t = i * 0.01f; 
  x[i] = x0 + t * ( x1 - x0 ); 
  y[i] = y0 + t * ( y1 - y0 ); 
} 
Example 2: A circle with radius r and center xm,ym in parametric form: 
x = xm + r * cosinus( 2 * Pi * t ); 
y = ym + r *   sinus( 2 * Pi * t ); 
where t takes any value between 0.0 and 1.0. 
If you want to compute 100 points on the perimeter you just write the simple program: 
float[] x = new Single[100]; float[] y = new Single[100]; 
for ( int i=0; i < 100; i++ ) 
{ double arcus = 2.0 * Math.PI * i * 0.01; 
  x[i] = xm + r * (Single)Math.Cos( arcus ); 
  y[i] = ym + r * (Single)Math.Sin( arcus ); 
} 


