
 1

Raster Graphics
Copyright © by V. Miszalok, last update: 18-05-2007

 Why Raster Graphics ?
 The Raster Matrix
 Pixel
 Comparison Vector ↔ Raster Graphics

Why Raster Graphics ?
Until approx. 1980 computer graphics was only and exclusively vector graphics. The computer community was
inspired of the aesthetics of the fast line movements of the vector displays, which were much more elegant
than the thick horizontal TV lines and it appeared absurdly that TV could ever replace the elegant vector
pictures of the computers.
One did not feel as lack that the vector displays could not fill surfaces and that there was just one color.
On the other hand TV receivers were cheap and popular, vector displays however expensive and exotic.
Therefore the computer industry had to use TV to conquer a mass-market. It had to connect a linearly
addressed digital machine (the computer) with a surface covering, matrix oriented, analog CRT = TV.
This was the birth of an important computer extension, the graphic board, consisting of:
1) fast RAM to store the raster matrix (=digital image memory)
2) fast address generator for the matrix synchronously to the analog H- and V-Sync signals (=video controller)
3) fast digital-to-analog converter (=DAC), which has to convert the matrix figures
into analog brightness + color signals
The first raster graphics looked deterring: Mickey Mouse was composed of flickering and clumsy pixels and had
roughly jagged ears. The fusion of computer and TV was first a failure. It became clear that useful raster
graphics need much better technology than TV i.e. approx. double resolution of space and time.
Under this pressure two new (at first pretty expensive) products emerged:
the computer monitor and the graphics board.
Nowadays raster graphics rules the desk top although it has neither thin lines nor curves, which have to be
simulated by stairs. It carries enormous redundancy and it's very difficult to write pure raster graphics programs.
This is the reason why vector graphics will never die. We desperately need them as back ground data behind all
artificial raster graphics (not behind pure photos and videos).

The Raster Matrix
is a rectangular arrangement of integers (types Byte, UInt16, UInt32 oder Color)
in width columns and height rows.
column index: x, with 0 <= x < width
row index: y, with 0 <= y < height.

0/0 1/0

0/1 1/1

x/0

0/y

x/1

x/y1/0

0 1 x width-1

0

1

y

height-1

……. …..

…….

…….

…….

…….

…..

…..

…..

…..

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

 column index x

 row
 index y

…
.

…
.

width-1/y

width-1/1

width-1/0

width-1/
height-1

0/height-1 x/height-1

Example: Homunculus = bright person on dark background
no. of columns = width = 9,
no. of rows = height = 10

0 0 0 9 9 9 0 0 0
0 0 0 9 3 9 0 0 0 [4,1] = mouth
0 0 0 9 9 9 0 0 0
0 0 0 0 9 0 0 0 0 [4,3] = neck
3 4 5 9 9 9 5 4 3 [0,4] and [8,4] = hands
0 0 0 9 8 9 0 0 0 [4,5] = navel
0 0 0 9 9 9 0 0 0
0 0 0 6 0 6 0 0 0
0 0 0 5 0 5 0 0 0
0 0 0 5 0 5 0 0 0 [3,9] and [5,9] = feet

 2
Examples of the definition of a raster matrix M with 32-Bit color pixels = ARGB-pixel:
C++ as array : int M[height][width];
Java as array : int[][] M = new int[height][width];
C# as array : Color[,] M = new Color[height, width];
C# as bitmap: Bitmap M = new Bitmap(width, height, PixelFormat.Format32bppArgb);
Confusing, but important: All computer languages require to write first the y-coordinate in front of the
x-coordinate in 2D raster arrays. Reason: In computers there are no such things as a matrix.
Computers just have a linearly addressed memory space and map any matrix into this space.
When you want to map the first line (y = 0) first, then you have to write y first.
Otherwise the computer maps differently: It stores the fist column first, which is contrary to any intuition.
Consequence: If you want to blacken the mouth of the Homunculus, then write:
C++ as array : Homunculus[1][4] = 0;
Java as array : Homunculus[1][4] = 0;
C# as array : Homunculus[1,4] = Color.Black;
C# as bitmap: Homunculus.SetPixel(4, 1, Color.Black);
Linear addressing:
A matrix is a pure language construct, because computers know only a linear address schema. Imagine the
[y][x]-matrix as a chest of drawers. Inside the main memory the drawers are put on the floor side by side.

row 0

row y

row 1…
..

…
..

x

row ySize-1
row 0 row y row ySize-1….…. x

x

2D address = M[y][x]
linear address = M + y*xSize+x

xSize xSize xSize xSize

start address = M In main memory: At first row 0, then row
1 etc. until row height-1. If you want a
pixel M[y][x] from inside, the computer
has to find the linear address
M + y * width + x.
You pay the comfortable access
M[y][x] with 2 additions and a
multiplication.

Consequence: With millions of pixels the matrix addressing is slow.
Better: Use pointers for fast operations on images.
Example: Slow code to clear a matrix M[height][width]:
for (y=0; y < height; y++)
 for (x=0; x < width; x++)
 M[y][x] = 0;
Example: Fast code to clear a matrix M[height][width]:
int* pointer = M;
for (i=0; i < width*height; i++) *pointer++ = 0;
Example: Very fast code to clear a matrix M[height][width]:
for (int* pointer = M; pointer < M + width*height;) *pointer++ = 0;

Pixel
= acronym for "Picture Element" denominates an element of the raster matrix.
A matrix accommodates just one type of pixel, but many types = pixel formats exist.
Samples:

1bppIndexed 1 bit per pixel with indexed color. Requires a LUT with 2 colors in it. For binary images.
4bppIndexed 4 bits per pixel, indexed. Requires a LUT with 3x16 palette entries.
8bppIndexed 8 bits per pixel, indexed. Requires a LUT with 3x256 palette entries.
16bppGrayScale 16 bits per pixel. The color information specifies 65536 shades of gray.

16bppRgb555 16 bits per pixel; 5 bits each are used for the red, green, and blue components. The
remaining bit is not used.

24bppRgb 24 bits per pixel; 8 bits each are used for the red, green, and blue components.
32bppArgb 32 bits per pixel; 8 bits each are used for the alpha, red, green, and blue components.
32bppRgb 32 bits per pixel; 8 bits each are used for the red, green, and blue components. The

remaining 8 bits are not used.
64bppArgb 64 bits per pixel; 16 bits each are used for the alpha, red, green, and blue components.

False Color Image = generic term for the first 3 formats 1bppIndexed, 4bppIndexed und 8bppIndexed.
Gray Value Image = 16bppGrayScale.
True Color Image = generic term for all other formats.

 3
Usual pixel formats are:
1bppIndexed → for binary images and b/w-printers, being quite space saving.
32bppRgb → for color photos, because 32bpp fits to the 32-bit memory and 32-bit addressing of PCs.

3 Memory Layouts of a Pixel:

32bppRgb,

24bppRgb und

16bppRgb555

Imge by Thomas Schedl

Comparison Vector ↔ Raster Graphics
Main differences

 Vector Graphics Raster Graphics

main data structure Polygon:
PointF[] p = new PointF[n];

Matrix:
Bitmap bmp = new Bitmap(width, height,
PixelFormat.Format32bppRgb);

other data structures rectangle, ellipse, Bézier curve, spline,
mesh RLC, Crack Code, MPEG

file formats WMF, PostScript, XAML, PDF, Flash, X BMP, GIF, JPEG, MPEG, PNG, TIFF, AVI

memory consumption minimal: n*sizeof(PointF) enormous: width*height*sizeof(Color)

capability to draw
lines very good with CRTs horizontal only , with flat panels horizontal and

vertical, but never oblique
capability to fill areas hatching only good, but with jagged borders

capability to writing too lean, but good for scalable outlinings
= one font for all sizes = TrueType

good, but with jagged borders,
needs a font for every size

capability to pictures
of the real world null, outlines only good = TV

capability to produce
colors

CRTs almost ever monochrome, maximal
2 colors possible good: almost ever RGB

produced by always a human being
almost always a machine:
a) real world digital images (camera, scanner)
b) rendered from vector graphics (graphic board)

mathematics all laws of analytic geometry apply new digital geometry necessary

flickering, refresh flickers only when polygons have too
many vertices independent from picture content

ability to drawings CAD, Comics texts, images
volatile output RA-CRT = vector display line-CRT, flat panel display = raster display
durable output plotter printer

Comparison of the operations scroll, zoom, rot

scroll, zoom, rot of polygon p0 → p1 scroll, zoom, rot of bitmap bmp0 → bmp1

all x, y are floats all x, y are integers

steplessly only integer steps
always highly precise nearly always with rounding errors

forward transformation from p0 to p1:
transform each vertex from p0 to p1

back transformation from bmp1 to bmp0:
replace each bmp1-pixel by a pixel from bmp0

there is no image border big problem: losses by clipping
completly reversible operations hardly ever reversible

operations are cascadeable operations must always start from the original bmp0

p0 can be overwritten by p1 normally bmp0 must be preserved,
do not overwrite by bmp1 !

 4
Code comparison of scroll (translations: float dx, float dy)

Vector-Scroll of Polygon p0 → p1 Raster-Scroll of Bitmap bmp0 → bmp1
for all vertices 0 <= i < n
{ p1[i].x = p0[i].x + dx;
 p1[i].y = p0[i].y + dy;
}

int idx = Convert.ToInt32(dx);
int idy = Convert.ToInt32(dy);
for (int y1=0; y1 < bmp1.Height; y1++)
{ int y0 = y1 - idy;
 if (y0 < 0 || y0 >= bmp0.Height) continue; //outside
 for (int x1=0; x1 < bmp1.Width; x1++)
 { int x0 = x1 - idx;
 if (x0 < 0 || x0 >= bmp0.Width) continue; //outside
 Color color = bmp0.GetPixel(x0, y0);
 bmp1.SetPixel(x1, y1, color);
 }
}

Code comparison of Zoom (scalings: float zoomx, float zoomy)
Center of zoom = origin of the coordinates

Vector-Zoom of Polygon p0 → p1 Raster-Zoom von Bitmap bmp0 → bmp1
//center (0/0)
for all vertices 0 <= i < n
{ p1[i].x = p0[i].x * zoomx;
 p1[i].y = p0[i].y * zoomy;
}

for (int y1=0; y1 < bmp1.Height; y1++)
{ int y0 = Convert.ToInt32(y1 / zoomy);
 if (y0 < 0 || y0 >= bmp0.Height) continue; //outside
 for (int x1=0; x1 < bmp1.Width; x1++)
 { int x0 = Convert.ToInt32(x1 / zoomx);
 if (x0 < 0 || x0 >= bmp0.Width) continue; //outside
 Color color = bmp0.GetPixel(x0, y0);
 bmp1.SetPixel(x1, y1, color);
 }
}

Code comparison of Rotation (by α degrees clockwise around the origin)

By α-Rotation of Polygon p0 → p1 By α-Rotation of Bitmap bmp0 → bmp1
//center of rotation (0/0)
double arcus = alpha * 2 * Math.PI / 360;
float sinus = (float)Math.Sin(arcus);
float cosinus = (float)Math.Cos(arcus);
for all vertices 0 <= i < n
{ p1[i].x = p0[i].x * cosinus
 - p0[i].y * sinus;
 p1[i].y = p0[i].x * sinus
 + p0[i].y * cosinus;
}

double arcus = alpha * 2 * Math.PI / 360;
float sinus = (float)Math.Sin(arcus);
float cosinus = (float)Math.Cos(arcus);
for (int y1=0; y1 < bmp1.Height; y1++)
{ float y1_sinus = y1 * sinus;
 float y1_cosinus = y1 * cosinus;
 for (int x1=0; x1 < bmp1.Width; x1++)
 { int x0 = Convert.ToInt32(x1 * cosinus + y1_sinus);
 if (x0 < 0 || x0 >= bmp0.Width) continue;
 int y0 = Convert.ToInt32(-x1 * sinus + y1_cosinus);
 if (y0 < 0 || y0 >= bmp0.Height) continue;
 Color color = bmp0.GetPixel(x0, y0);
 bmp1.SetPixel(x1, y1, color);
 }
}

Annotation to raster rotation:
The Graphics-class of .NET contains an elegant variant of the method DrawImage(...). It accepts a
parameter of three verices p[0], p[1] and p[2] which define a parallelogram. DrawImage(...) scales,
rotates and shears the raster image to fit the corners of the image to the corners of the parallelogram. You just
have to rotate the polygon PointF[] p = new PointF[3];, feed the rotated triangle into
DrawImage(myBitmap, p) and the complete raster rotation follows automatically.
See: http://msdn.microsoft.com/library/.... You find such a rotation animation where the vertices of the
triangle slide along the window borders here: ../../C_IPCis/C1_Bitmap/CIPCisBitmap_e.htm#a9.

