
 1

OpenGL and DirectX
Copyright © by V. Miszalok, last update: 20-11-2005

 OpenGL and DirectX
 OpenGL Libraries and DirectX Namespaces
 OpenGL & Direct3D Pipeline
 HEL and HAL
 Direct3D Device

OpenGL and DirectX
OpenGL (= Open Graphics Language) is a software interface to the graphic hardware consisting of approx. 250
commands in 2 libraries oglcore and oglutilities. Developed since 1990 by SGI (Silicon Graphics Inc.)
for hardware- and platform-independent graphics (aimed at graphic hardware manufacturers and programmers).
Links:
www.opengl.org
www.sgi.com/products/software/opengl
See the OpenGL/C++/MFC samples:
www.miszalok.de/C_3DC7/C1_OpenGL/C3DC7OpenGL_d.htm and
www.miszalok.de/C_3DC7/C2_Texture/C3DC7Texture_d.htm

DirectX is a collection of 10 libraries (see table below) for extreme hardware oriented programming in hardawre
independent form. Permanent development by Microsoft since 1994 (formerly "Games SDK") in ascending
version numbers (today: 9.0c). Goal: Windows as platform for multimedia. Nearly all graphic-, sound-, radio-,
video-, TV-boards are bundeled with DirectX driver software.
The DirectX libraries are fundamentally differnt from all other Windows-APIs (Application Programming
Interfaces). They do not guarantee any execution. The programmer has to find out whether the DirectX-
programmed hardware exists on the target machine and if yes, what could be done with it.
In practice the quick-and-dirty programmer pins his hope on the DirectX hardware driver. The hope is that the
driver is good enough not to simply deny an indigestible call via DirectX, but to dispose of a detour via normal
Windows libs (see HEL below). Prof. Miszalok's Course 3DCis bases on this hope too.
Links:
www.microsoft.com/windows/directx/default.aspx
www.intel.com/cd/ids/developer/asmo-na/eng/57590.htm?page=1
www.it-academy.cc/content/article_browse.php?ID=732
Notice the DirectX/C++/MFC sample:
www.miszalok.de/C_3DC7/C3_DirectDrawMesh/C3DC7DirectDrawMesh_d.htm
and a lot of DirectX/C#/.NET tutorials and samples:
www.miszalok.de/C_3DCis/Index_of_Course.htm and
www.miszalok.de/C_3DCisCA/Index_of_Course.htm and
www.miszalok.de/C_3DCisMS/Index_of_Course.htm

OpenGL and Direct3D are on a par and rather similar. Please notice the following differences:

 OpenGL DirectX
object oriented no yes
supports audio/video/game input devices no yes
operating systems many only Windows and its variants
drivers available for high-end graphic boards nearly all graphic boards
quality of drivers often bad often better than OpenGL-drivers
mainly used by universities, research, CAD game industry
docu, tutorials, samples, books many not as many as for OpenGL
new version every 5 years (except "Extensions") every 15 months
property of Silicon Graphics Inc. Microsoft

 2

OpenGL Libraries and DirectX Namespaces
OpenGL consists of two graphic libraries whereas DirectX confederates 10 libraries which all bypass the
operating system and access the hardware directly and dangerously. These libraries are wrapped by managed
DirectX namespaces. The first four of them deal with graphics.

OpenGL lib covers DirectX functionality from

oglcore Microsoft.DirectX, Microsoft.DirectX.DirectDraw,
Microsoft.DirectX.Direct3D

oglutilities Microsoft.DirectX.Direct3DX
.NET Namespace API = Application Programming Interface
Microsoft.DirectX common basic functions

Microsoft.DirectX.DirectDraw subset of Direct3D-lib: basic 2D functions, bitmaps, window
management

Microsoft.DirectX.Direct3D API for 3D graphics: wireframes, textures, light, Vertex and Pixel
Shaders

Microsoft.DirectX.Direct3DX 3D utilities library, Mesh class and scene graph

Microsoft.DirectX.DirectPlay network support for multiplayer games, host administration for
DirectPlay sessions

Microsoft.DirectX.DirectSound contains DirectMusic, API for real time multichannel mixer, 3D sound

Microsoft.DirectX.DirectInput API for keyboard, mouse, joystick, trackball, touchpad, gamepad, wheel,
force feedback

Microsoft.DirectX.AudioVideoPlayback API for simple sound and video
Microsoft.DirectX.Diagnostics system diagnostics API
Microsoft.DirectX.Security system security API

OpenGL & Direct3D Pipeline
Modern graphic chips contain several cascading autonomous graphic processors which are arranged in form of
a pipeline (= bucket chain). The first half of the processor chain is occupied with vector graphics, the second
with raster graphics.
The command chain of OpenGL and Direct3D mirrors the processor chain of the graphic chips = GPUs. Thus
about half of the OpenGL and Direct3D functions are vector functions und half are raster functions and some
are mixed. The fundamental differences between vector- and raster graphics are veiled and hidden in order to
spare the programmer the problems of vector to raster transformation. The programmer is also shielded from all
problems of division of labor between CPU and graphic board, as from all technical differences between the
various types of graphic chips. With all this comfort, beginners need just poor hardware and raster graphics
know how.

Direct3D Pipeline: The pace of picture generation by Direct3D follows the architecture of GPUs.

Vertex Array

Mesh File

Primitive Tesselation
1 to 8 Vertex Shaders driven by

a) Firmware = T&L Engine or
b) HLSL or Cg Programs

Clipping,
Back face

Culling

1 to 32
parallel Pixel

Shaders

Texture,
BitBlitter

Alpha&Color
Blending,

Fog,
Dithering

Vector Graphics Raster Graphics

Z-
T
e
s
t

Z-
Buffer

TV,Video,
MPEG

Back
Buffer

a) Status Flags + 3x3-Matrices or
b) HLSL or Cg Programs

In DirectX you can switch off the complete vector graphics part of the GPU with the flag
CreateFlags.SoftwareVertexProcessing in the constructor of Device. In this case and/or if the graphic
board or the mother board have no or not a complete GPU, OpenGL/DirectX simulates the pipeline inside the
CPU. Then the terms vertex shader, T&L engine, HSSL/Cg programs give no sense any more and should be
replaced by CPU-based graphics, see below chapter HEL and HAL.

 3
Tesselation: Produces triangle
grids from polygons and refines a
coarse triangle grid.
Modern: Refinement dependent on
the viewer distance = adaptive
refinement = depth-adaptive
tesselation = Level Of Detail based
Tesselation = LOD based
Tesselation = coarse triangles when
the object is far away and small and
fine triangles in short distance to the
eye point. image source: www.hartware.net

Vertex Shader = Pipeline of micro processors inside the GPU. Modern GPUs contain up to 8 such pipelines in
parallel. The meaning is ambiguous: A program written in HLSL or Cg to be fed into a Vertex Shader is called
Vertex Shader also.
T&L Engine = Transform & Light Engine = Fixed Vector Pipeline = means 1 to 8 parallel Vertex Shaders, driven
by prefabricated firmware offering poor freedom. You have to use property flags and 3x3 matrices to enter
commands into this firmware:
a) property flags (f.i. device.Lights[0].Enabled = true;) and
b) 3x3 matrices (f.i. device.Transform.View = Matrix.LookAtLH(new Vector3(0f, 0f,-4f),
new Vector3(0f, 0f, 0f), new Vector3(0f, 1f, 0f));).
Clipping = Cutting lines and convex polygons which overlap the image border using the Cohen-Sutherland-
Algorithm
Back Face Culling: approx. 50% of the triangles show their back sides. Removing them accelerates all
following raster operations to double speed.
Pixel-Shader = rasterizer = special processors downstream of the vertex shaders, specialized on raster
graphics = textures and rendering of singular pixels, programmable with HLSL or Cg, graphic chip contains up
to 32 parallel pixel shaders.
Information and tools about shader programming:
http://developer.nvidia.com/object/fx_composer_home.html
Texture = deformation = distorts a rectangular image in such a way that it fits onto a mesh
BitBlitter = abbrev. Bit Block Transfer = externally rendered characters, lines, rectangles, ellipses etc.
Z-Test = Depth Test = compare current z-coordinate with corresponding Z-buffer content and throw the pixel
away if hidden
Alpha & Color Blending = masked superimposing of transparent pixels or pixels with special colors
Fog = fog depending on distance
Dithering = smoothing of stepped color transitions of 4-, 8- und 16-bit images by sliding mixture

HEL and HAL
With the installation of a driver of a graphics board, sound board, joystick etc. the driver embodies itself in the
operating system in form of a specific Device Driver Interface DDI. With the help of the appropriate DDIs each
DirectX library initializes a Hardware Emulation Layer HEL and a call-identical Hardware Abstraction Layer HAL.
HEL contains the low-level calls of basic functions and CPU-code, HAL the calls of external, autonomous micro
programs of the graphic board, sound board etc. HAL has priority in front of HEL, but all library calls are
executed via HEL in case HAL does not work. HEL animations, HEL audios, HEL videos etc. used to be awfully
slow.
But CPU manufacturers as Intel or AMD fighting against the graphic- and multimedia boards improve the
graphic and sound power of their CPUs and the architecture of busses and empower HEL vs. HAL. They have
limited success but many today users just playing simple games and simple multimedia do not necessarily need
dedicated hardware. Modern on-board graphic chips = computers without graphic boards, video memory and
HAL execute DirectX programs at sufficient speed for normal office applications.

Example: Draw with GDI+ or with DirectDraw HEL/HAL
There are three ways to draw something:
1) normal Windows instruction without DirectX uses GDI+ and DDI.
 Sample: graphics.DrawLine(mypen,0,0,100,100);
2) using DirectDraw, HEL and DDI
3) using DirectDraw und HAL

3) is faster than 2) and 2) is faster than 1). If call 3) exists, 2) is closed.
Its possible to mix GDI+ and DirectDraw statements in any order.
GDI+ Info: GDIPlus.asp

Graphic Board

HEL

myProgram

Windows GDI+
= Graphics Device Interface

DDI = Display Device
Driver Interface

DirectDraw

HAL

1)

1) 2) 3)

3)

 4
Caution: Not fully developed and buggy graphic drivers often install an incomplete DDI and/or HAL which
depreciates a good graphic hardware. The class Device just has the driver as only knowledge source about the
hardware and just uses the features described by DDI and/or HAL. Recommended: Check in the Internet with
the manufacturer of your graphic board whether there is a newer driver and install it.

Direct3D Device
is the most important Direct3D class, it mirrors and manages the graphic board hardware and the current
software canvas. The most visible method Device.Present shows the scene on the monitor by flipping the
BackBuffer of the graphic board to FrontBuffer.
The class contains properties/methods for vector graphics (i.e. Viewport, VertexFormat, Transform) and for
raster graphics (i.e. Material, Texture, adresses and lengths of the output buffers).
At first any Direct3D program has to instanciate this class in order to obtain ressources and access rights to
video memory. Unfortunately both are not of duration, they can be lost at any moment and have to be initialized
from scratch. The first symptom of the loss of Device is the DeviceLostException thrown by
Device.Present which does not work anymore. Device is lost when:
1) The user changes the window size of the program with the mouse: OnResize-Event.
2) A screen saver takes over the graphic board exclusivly.
3) The Windows operating system takes over the graphic board exclusivly.
4) CPU or graphic board change to standby power saving mode.
5) The cover of the notebook is opened or closed.
The samples of Course3DCis solve problem 1) by initializing Device inside the OnResize()-EventHandler.
Caution: For the sake of simplicity problems 2) till 5) remain unsolved. Professional solutions can be found
under http://pluralsight.com/wiki/default.aspx/Craig.DirectX/DeviceRecoveryTutorial.html and
www.jkarlsson.com/Articles/devicelost.asp

Important Properties of Direct3D class "Device"

DeviceCaps
Gets a struct representing the capabilities of the hardware; this is the property to query
when you want to know whether the hardware supports a particular feature that your
application may require.

Viewport Gets/sets the rectangular rendering region on the device canvas.
Material Gets/sets the material to use in rendering.
Lights Gets the collection of lights that can be activated for rendering.

RenderState Gets the collection of render states that are used to control the different stages of the
Direct3D pipeline.

VertexDeclaration Gets/sets a description of the vertex format being used with a vertex shader.
VertexFormat Gets/sets a description of the vertex format being used with the fixed vector pipeline.
VertexShader,
PixelShader Gets/sets the vertex/pixel shader to use for rendering

Important Methods of Direct3D class "Device"
BeginScene Prepares the device to render a frame of primitives.
EndScene Tells the device that all the primitives have been rendered for a frame.
DrawPrimitives Renders a primitive.
Clear Clears the viewport in preparation for another frame to render.

Present Prepares and renders the next buffer; Present is called after EndScene and before the
next BeginScene (for the next frame)

GetTransform,
SetTransform

Gets/sets the world, view, projection or other transform; transforms are applied to vertex
positions and normals, and/or to texture coordinates

GetTexture,
SetTexture Gets/sets the texture associated with a given texture stage

 5
Sample before initialising "Device": Query of available pixel formats and refreh rates
1: StringBuilder s = new StringBuilder();
2: AdapterInformation ai = Manager.Adapters(0);
3: foreach DisplayMode dm in ai.SupportedDisplayModes
4: s.Append(dm.Format + " " + dm.RefreshRate + "\r\n");
line 2: Take graphic board no. 0. (There can be more than one on the bus !)
line 3: Enumerate all available SupportedDisplayModes.
line 4: Append a line to text s: Format-string + blank + RefreshRate-string + carriage return + new line.

Sample initialising "Device":
Such initialising is necessary upon any window resize (OnResize event) because Device is lost.
1: presentParams = new PresentParameters();
2: presentParams.Windowed = true;
3: presentParams.SwapEffect = SwapEffect.Discard;
4: Device device = new Device(0, DeviceType.Hardware, this,
 CreateFlags.SoftwareVertexProcessing, presentParams);
line 1: Memory space for structure PresentParams
line 2: Do not use full screen.
line 3: Switch off SwapEffect.
line 4: new Device: order the necessary memory space and fill it with prededefined and some self defined
properties.

Sample using "Device":
1: device.Clear(ClearFlags.Target, Color.Blue, 1.0f, 0);
2: device.BeginScene();
3: (Mesh.Teapot(device)).DrawSubset(0);
4: device.EndScene();
5: device.Present();
line 1: Clear the BackBuffer canvas.
line 2: Open bracket
line 3: Draw the teapot on the BackBuffer canvas.
line 4: Close bracket
line 5: Flip BackBuffer and FrontBuffer.

